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ABSTRACT: Using agent-based modeling, we generalize Hotelling’s model of spatial competition
with more than two ��rms in a two-dimensional space. Firms choose both price and location to max-
imize pro��ts. The principle of minimum di�ferentiation does not hold in general. Local duopolies
emerge fromthe interactionbetween ��rms. Firmsdonot spreaduniformly across the two-dimensional
space, nor do they all charge the same price. Firms in more competitive locations charge lower prices
and generate less pro��t.
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1 INTRODUCTION

In a pioneering paper Hotelling (1929) presented a model of two ��rms competing to sell a homo-
geneous product to customers uniformly distributed along a line. Though the Hotelling model has
been extended in many ways1, no one has produced a general model of spatial competition between
more than two ��rms in a two-dimensional space, with both price and location as choice variables. The
problem is important because competition in the real world seldom occurs between two ��rms on a
one-dimensional space. Most products have multiple attributes and multiple ��rms supplying them.

In this paper, we develop an agent-based simulation model to study spatial competition in a two-
dimensional space withmultiple ��rms. We develop an agent-basedmodel because it is di���cult to gen-
eralize theHotellingmodel using analytical methods. Interaction between ��rms in a two-dimensional
space makes it di���cult to compute the areas served by di�ferent ��rms. The problem has so far proved
analytically intractable. In the words of mathematical economists Eaton and Lipsey (1975, p.41):

Todetermine if the con��guration is an equilibriumonewith respect to a smallmovement
of the ��rm in any direction is an almost impossible task using analytical methods, and in
any case much more is required to establish global equilibrium.

Eaton and Lipsey (1975) built one of the ��rst agent-based simulation models to pursue the problem
of spatial competition. They located a handful of ��rms on a space and numerically calculated the
market area for each ��rm for a number of alternative locations. The technical limitations of the age
meant that they could study only a few moves by each ��rm. We develop Eaton and Lipsey’s approach
to produce a general model of spatial competition. Firms are placed on random locations on a two-
dimensional grid. Customers are spread evenly across the grid. Every time step, ��rms make price and
location choices. Firms change price or location if it is pro��table to do so. The principle of mini-
mum di�ferentiation does not hold in general. Interactions between ��rms produce local duopolies,
with intense local competition within coupled-��rms and more stable division of customers between
di�ferent couples. This is akin to how large home improvements stores like Home Depot and Lowes
compete on prices, and smaller hardware stores appeal to niche markets by locating in isolated places
or delivering specialized products.

Our paper is related to decades of work on generalizing Hotelling’s model. Devletoglou (1965), Jonas
(1968), Drezner (1982), Tabuchi (1994), and Veendorp and Majeed (1995) study the problem of two
��rms on a two-dimensional space. All but Tabuchi (1994) assume both ��rms charge the same price.
Tabuchi uses an astute transformation to study price and location choices. However the transfor-
mation is not valid for systems with more than two ��rms. Wendell and McKelvey (1981), Ben-Akiva,
De Palma, andThisse (1989), andOkabe andAoyagi (1991) study a systemwithmore than two ��rms in
a two-dimensional space. Wendell andMcKelvey (1981) explore a variety of symmetric equilibria using
a “guess and check” method under the assumption that all ��rms charge the same price. Ben-Akiva et
al. (1989) allow ��rms to charge di�ferent prices but ��x location along one dimension. Okabe and Aoy-
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agi (1991) allow ��rms to choose location along both dimensions but assume all ��rms charge the same
price. Irmen and Thisse (1998) and Hehenkamp and Wambach (2010) study competition between
two ��rms in higher dimensional spaces. They characterize a subset of equilibria for which analytical
solutions exist. Caplin andNalebu�f (1991) prove the existence of equilibrium for any number of ��rms
in high dimensional spaces. But they assume location is not a choice variable.

Most authors assume either price or location is ��xed. Despite the simpli��cation, they often study a
subset of equilibria using “guess and check” methods. Though some equilibria can be characterized
by the ‘guess and check’ approach, it is di���cult to say whether these represent a non-trivial portion of
the universe of equilibria. Furthermore, there is little reason to believe that the equilibria that are the
least di���cult to characterize are economically the most relevant.

Overall, it is fair to say that the problem of spatial competition with both price and location as choice
variables remains open. If a goodmanymathematical economists are to be believed, then the problem
of computing analytical solutions of a generalmodel of spatial competition is “very tedious” (Irmen&
Thisse, 1998, 84), perhaps “impossible” (Jonas, 1968, 17). Future developments inmathematical meth-
ods may allow economists to develop analytical solutions of general spatial competition. But we need
not sit idle until then. Themathematical intractability of the problem begs for a whole new approach.
Agent-basedmodeling is one such approach. Recent developments in computing technology allowus
to build and study synthetic economies populated with arti��cial agents in silico Axtell (2000). Some
consider agent-based modeling as a ‘new mathematics’ for social science Borrill and Tesfatsion (2011);
Maroulis et al. (2010); Wilensky and Rand (2015). Others have called it a ‘third way of doing science’
because it contains elements of deduction and induction Axelrod (1997). We present an agent-based
implementation of the Hotelling model with many ��rms in a two-dimensional space. In addition to
characterizing equilibria, our model sheds light on out-of-equilibrium dynamics. The following sec-
tions will develop the model, present the simulation results, and provide concluding discussion and
remarks.

2 THE MODEL

There are two types of agents: ��rms and customers. Firms are initially randomly placed on points
in a two-dimensional grid cell coordinate system. Each square patch in the grid is a customer. Three
events occur every time step. One, each customer buys one unit of the good from its lowest cost
��rm. Two, ��rms evaluate moving to a di�ferent location in the two-dimensional space and changing
their price. Three, ��rms simultaneously exercise their location and price choices. We run the econ-
omy forward in time and analyze the resulting data. The model is written in the NetLogo agent-
based modeling language Wilensky (1999). The model is included in the NetLogo model library as
the Hotelling’s Law Model Ottino, Stonedahl, and Wilensky (2009), and is freely available online at
http://ccl.northwestern.edu/netlogo/models/Hotelling’sLaw.
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Algorithm 1: Pseudocode for the agent-based model.

Initialization:
customer agents placed on each lattice point of 41x41 grid.
for each ��rm Fi 2 F1, F2, ..., FN :

place ��rm Fi on a random lattice point.
set initial price for Fi 10

Each time step:
letM (the set of movement actions)= {Up,Down, Left, Right}
let P (the set of price change actions)= {+1,�1}
for each ��rm Fi:

Fi selectsmi 2M s.t. calculatedProfitAfter(mi) is maximized
Fi selects pi 2 P s.t. calculatedProfitAfter(pi) is maximized

for each ��rm Fi:
Fi takes actionsmi and pi

for each customerCj :
Cj selects ��rm Fmin s.t. price(Fmin) + transportationCost(Fmin, Cj) is minimized.
Cj purchases one unit of the good from Fmin

2.1 Firms

The cost of production is zero; pro��t equals revenue. Firms begin with randomly assigned locations
and price of ten. Every time step, ��rms compute the pro��t from a one unit move in each of the four
cardinal directions. They move to the point with the greatest pro��t. Firms do not move if the pro��t
at the present location is greater than the pro��ts at any of the four alternative locations. Every time
step, ��rms compute the pro��t from a one unit increase and a one unit decrease in price. They choose
to charge the price that yields the greatest pro��t. Firms do not change price if the present price o�fers
a pro��t greater than the alternatives.

Firms compute pro��ts frompotential changes in location and price by collecting demand information
fromall customers. Customers truthfully reportwhether theywouldbuy froma ��rmgiven its location
and price. Firms incur no cost of moving locations, changing price, or collecting information. While
making location and price decisions, each ��rm assumes that all other ��rms will remain at the current
locations and charge existing prices. In other words, we assume ‘zero conjectural variation’.

2.2 Customers

Every time step, customers compute the cost of buying from all ��rms on the grid. The cost of a good
is the sum of the price charged and the distance to the ��rm. The distance equals the Euclidean norm.
Every time step, each customer buys one unit of the good from its lowest cost ��rm (demand is price
inelastic). When indi�ferent between multiple ��rms, customers randomly select one ��rm from the
indi�ference set.
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2.3 Experiments and data collection

For the experimental results that follow, we consider three variations of this model: (i) where ��rms
may change both their price and their location, (ii) where ��rms may only change location but prices
are ��xed (constant and equal to all competitors), (iii) where ��rms may only change their price, but
locations are ��xed (at the randomly initialized position).

For each of these variations, and for varying numbers of ��rms (2...10), we ran 500 replicate simulations.
Each simulationwasperformedusing a 41x41 grid cell coordinate system (representing 1681 customers),
for 1000 simulated time steps. Data collected included the ��nal positions of each ��rm, the price each
��rm was charging for the product, and the area of patronage (number of customers) each ��rm had
captured in the market. The results from these main experiments are described below, followed by a
discussion of some follow-up experiments that were performed for the sake of sensitivity analysis.

3 RESULTS

Result 1 The principle of minimum di�erentiation does not hold in general.

Hotelling (1929) found two ��rms competing on a line choose to locate next to each other. This came
to be known as the principle ofminimumdi�ferentiation. Hotelling himself, andmany since, claimed
the principle explains a variety of phenomena including why political parties are all alike Boulding
(1955); Downs (1957).

Previous economists have shown the principle of minimum di�ferentiation is sensitive to the assump-
tions of Hotelling’s model. In particular, economists have proved that the principle does not hold if
demand is price elastic Devletoglou (1965); Hartwick and Hartwick (1971); Lerner and Singer (1937);
Robinson (1941); Smithies (1941) or if transportation costs are non-linear d’Aspremont, Gabszewicz,
and Thisse (1979). In contrast, our model matches Hotelling’s original assumptions that demand is
price inelastic and transportation costs are linear.

For a discrete two-dimensional space, we ��nd that the principle of minimum di�ferentiation holds
when there are two ��rms, but does not hold when there are three or more ��rms. From the very begin-
ning, Hotelling’s original claim that the principle of minimum di�ferentiation holds for three stores
was challenged Chamberlin (1933); Lerner and Singer (1937), eventually establishing that there is no
general equilibrium for precisely three stores on the one-dimensional interval. For two-dimensional
market spaces where ��rms choose location but price is ��xed, Eaton and Lipsey (1975) hypothesize (but
were unable to prove) that no equilibria exist for 3 or more ��rms. The potential lack of equilibria
may have dashed hopes of solving for eventual steady-state con��gurations, but it does not settle the
questionofwhatnon-equilibriumbehaviorwouldoccurwith three stores, andwhether itwouldmore
closely approximate the principle ofminimumdi�ferentiation,maximal di�ferentiation, or somewhere
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Figure 1: Minimum distance to nearest when ��rms choose locations but prices are ��xed.

Notes: Data plotted from 500 replicate simulation runs for each case (2 through 10 ��rms).

Figure 2: Maximum distance to nearest ��rm when ��rms choose locations but prices are ��xed.

Notes: Data plotted from 500 replicate simulation runs for each case (2 through 10 ��rms).

in between. Agent-based simulation o�fers an approach that can exploremodel dynamics in such cases,
and track the evolution of competition over time.

At the endof every simulation, thedistancebetween each ��rmand its nearest competitorwas recorded.
Figures 1 and 3 plot the minimum distances, while Figures 2 and 4 plot the maximum distances at the
end of every simulation. Figures 1 and 2 pertain to the case when ��rms choose locations but prices are
��xed. Figures 3 and 4 pertain to the casewhen ��rms choose both locations and prices. Figures 1-4 show
that with two ��rms the minimum and maximum distances are either 0 or 1. The two ��rms are either
on the same location or adjacent to each other. Firms in ourmodel seek local improvements assuming
their competitor will maintain price and location. The two ��rms pivot around each other producing
a distance of 1 in some cases and 0 in others. When three ��rms choose location, but not price, they
form a gyrating equilateral triangle. This con��guration appears relatively stable, since each store ends
up losing somemarket share if it either moves in between the other two ��rms (closer to the center), or
moves away from the other two ��rms toward the boundary. When three ��rms choose both price and
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location, the resulting pattern tends to involve the three ��rms forming a line, with two ��rms locked
close together in ��erce price competition and the third ��rm positioned further away. With more than
three ��rms, ��rms arrange themselves in many di�ferent constellations (some of which are shown in
Figures 6 and 7). Figures 2 and 4 demonstrate that some ��rms are not especially close to any other
��rm, and do not form one large cluster; thus, the principle ofminimumdi�ferentiation does not hold.

Figure 3: Minimum distance to nearest ��rm when ��rms choose both prices and locations.

Notes: Data plotted from 500 replicate simulation runs for each case (2 through 10 ��rms).

Figure 4: Maximum distance to nearest ��rm when ��rms choose both prices and locations.

Notes: Data plotted from 500 replicate simulation runs for each case (2 through 10 ��rms).
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Result 2 Local duopolies emerge from the interaction between �rms.

An emergent property of the system is that ��rms form pairs, but never triples or groups of other sizes.
This result is consistent with the “principle of local clustering” ��nding of Eaton and Lipsey (1975),
although their model did not include ��rms’ ability to change prices, and used a 2-D disc shape rather
than a rectangular section of the plane. Lone ��rms have a tendency to move towards other lone ��rms
near them. However, pairs of ��rms do not together move towards other pairs. Rather they engage in
intense competition with each other. Lerner and Singer (1937) and Chamberlin (1953) showed that in
equilibrium some ��rms form pairs in the one-dimensional case. They argued ��rms at the edges must
necessarily forms pairs because otherwise they have a tendency to approach the center. We do not ��nd
this to be true in the two-dimensional case. Singleton ��rms may exist in the periphery. Unlike in one-
dimension, in two-dimensions a ��rm may lose some of its customers to other ��rms if it approaches
the center from the periphery.

Figure 5: Proportion of ��rms that form local duopoly pairs (less than 3 units distance from one other ��rm at the end of the simulation run).

Notes: Circles mark the case when ��rms choose locations but prices are ��xed. Crosses mark the case when ��rms choose both locations and prices. Each
data point represents the mean value from 500 replicate simulation runs.

Figure 5 shows the proportion of ��rms that form pairs. In most cases, a signi��cant proportion of
the ��rms form pairs. The notable exception to pair formation is when there are three stores that are
choosing location but have ��xed (equal) prices; in this case, the three stores tend to roughly form the
shape of a rotating equilateral triangle. Figures 6 and 7 show the characteristic spatial locations along
with the path taken by the ��rms. Table 1 lists the prices of ��rms in Figure 7.

Result 3 Firms charge lower prices in more competitive regions.

This result is not surprising, but it is nice to see that it naturally emerges from the basic model rules.
Firms with other ��rms near them charge low prices, whereas ��rms far away from competitors charge
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Figure 6: Characteristic locations with two, three and seven ��rms when ��rms choose locations but prices are ��xed.

Notes: Firms are represented by circles, each ��lled in with a distinct color. The grid cells, each representing a customer, are colored using a lighter shade
of the same hue as the ��rm which they currently patronize. The history of ��rms’ movement is shown as a trail of corresponding color.

Figure 7: Characteristic locations with two, three and seven ��rms when ��rms choose both prices and locations.

Notes: Visualization of ��rms and customers’ patronage is the same as described in Figure 6 above.

Table 1: Selling prices for the ��rms shown in Figure 7.

Region A B C D E F G H I J K L
Price charged 1 1 8 2 2 2 2 3 3 2 3 10

Notes: Firms positioned farther apart from others (e.g., C and L) charge higher prices than ��rms in competitive local duopolies, because they are able to
raise prices without losing as many customers as ��rms who have nearby competitors.

high prices. Some ��rms compete over large central areas by charging low prices, while other ��rms
move to the periphery to occupy smaller regions charging high prices. This characteristic pattern can
be observed in Table 1 and Figure 7 parts (b) and (c), where the ��rms labeled C and L are charging
substantially higher prices than the ��rms that pairedup and are engaged inpricewarswith their nearest
competitor.

Figure 8 displays plots of the relations between prices and distance to the nearest competitor. These
plots demonstrate that there is a positive relation between the distance to the nearest competitor and
price. The greater the distance to a competitor, the lower the level of competition, and greater the
price. Note that the prices are much lower in the case where the ��rms choose both location and price;
the ability of ��rms to move toward one another prevents any ��rm from pro��tably setting extremely
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high prices. Also, the tendency to form pairs with extremely low prices puts downward price pressure
even on the unpaired stores at a distance.

Figure 9 displays plots of the ��rms’ pro��ts versus prices. As pro��t is the product of a ��rm’s price and
customer base, higher priced ��rms could earn less pro��t if they serve a tinynichemarket. However, this
model shows a strong positive correlation between price and pro��t. Firms that position themselves far
away from their nearest competitors charge higher prices while maintaining a sizable customer base,
and thus reap greater pro��ts.

Figure 8: Price versus distance to nearest competitor when ��rms choose prices but locations are ��xed (left panel) and when ��rms choose both
locations and prices (right panel).

Notes: Data plotted from each ��rm from all of the 4500 simulations involving 2 to 10 ��rms.

Figure 9: Pro��t versus price when ��rms choose prices but locations are ��xed (left panel) and when ��rms choose both locations and prices (right panel).

Notes: Data plotted from each ��rm from all of the 4500 simulations involving 2 to 10 ��rms.
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4 SENSITIVITY ANALYSIS

We performed additional experiments to test the robustness of these results by relaxing several model
assumptions. Speci��cally, using themodel that includes bothmovement andprice changes, we explore
the impact of:

• imperfect information in the ��rms’ expectation formation process

• irrationality within customer agents’ purchasing decisions

Imperfect information was modeled by limiting the ��rms’ ability to obtain perfect information
about consumer demand when considering hypothetical location/price changes. Speci��cally, we in-
troduced a parameter (�rms’ sample percentage) that controls what percentage of the market ��rms
could query. Each time a ��rm would query customer demand, a random fraction of the customers
would respond, which could contribute to noise in the decision process. A more general interpre-

Figure 10: Sensitivity analysis for the distance between nearest ��rms (top panel), the fraction of ��rms involved in local duopolies (middle panel), and
the average price (bottom panle), with respect to ��rms’ sampling percentage (what fraction of consumers each ��rm surveys about potential patronage
during decision-making).

Notes: Each data point represents the average across 500 simulation runs on a 41x41 grid.
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tation of this parameter is that it speci��es ��rms’ ability to accurately estimate market demand. The
results of an experiment varying this sampling percentage from 5% through 100% are shown in Fig-
ure 10.

We report several key measures (average distance to nearest competitor, average number of stores en-
gaged in local duopolies, and average price). These measures are largely robust to imperfect informa-
tion, and even at relatively low sampling percentages (for instance 15%), the main results hold: a)
the principle of minimum di�ferentiation does not hold for more than two ��rms, b) a signi��cant (al-
beit smaller) fraction of stores form pairs, and c) ��rms charge less in more competitive regions. While
information degradation tends to lead to fewer local duopoly pairs, a small amount of imperfect in-
formation causes an increase in pairings in the 3-��rm case, possibly by injecting enough randomness
to disrupt the semi-stable triangular symmetry that sometimes forms.

Irrationalitywasmodeled by introducing a parameter (customer rationality percentage) that controls
the chance of each customer acting rationally (patronizing the least cost ��rm), as opposed to patron-

Figure 11: Sensitivity analysis for the distance between nearest ��rms (top panel), the fraction of ��rms involved in local duopolies (middle panel), and
the average price (bottom panel), with respect to customer rationality (the percent chance that each customer will choose to patronize their minimal
cost ��rm, instead of choosing randomly among all ��rms).
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izing a random store. This might be construed as situations where a customer is desperate for the
product or preoccupied by other matters, and purchses blindly without doing any comparison shop-
ping/research. This parameter similarly controls the chance that a customer would report demand
rationally to ��rms when queried, thus resulting in a di�ferent type of noise to the ��rms’ expectation
formation process.

Figure 11 shows the results for varying degrees of customer rationality. Once again, the results of this
paper hold for less than perfect rationality. In this case, keymodel measures are highly robust down to
approximately 80% rationality, below which some qualitatively di�ferent patterns begin to emerge.
When customers becomes su���ciently irrational, some ��rms (generally those not involved in local
duopolies) begin to continually raise prices, losing all market share save for the irrational customers
who randomly choose them (and are willing to pay any price).

Additionally, we performed simulations with varying market sizes (smaller and larger grids than the
41x41 used for the main experiments). These simulations yielded qualitatively similar results to those
presented here. The model is not particularly sensitive to the market size parameter, although smaller
markets generally lead to greater competition and thus lower prices as one would expect. For example,
see Figure 12, which shows how the average price increases as the market size increases.

Figure 12: Average price versus grid size for 3 ��rms that are choosing both location and price.

Notes: Results shown are from 50 replicate simulations for each grid size, which ranged from 11 to 41 by increments of 2.

5 CONCLUDING REMARKS

Economists have long known that ��rms compete not just on prices but also on the nature of the prod-
uct. The product itself is an economic variable Chamberlin (1953). In a pioneering article, Hotelling
(1929) developed a formal framework to study price and product competition. Though over 85 years
have passed since Hotelling’s contribution, no one has extended the model to two dimensions with
multiple ��rms making price and location choices. The problem has proved analytically intractable.
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We solve the problem using agent-based simulation, demonstrating that agent-based approaches can
o�fer additional insight into problems of economic theory that are very di���cult (if not impossible) to
approach analytically.

Our model is a highly stylized depiction of the complex realities of price and product competition.
However, one of the hallmarks of the most successful agent-basedmodels, such as the Schelling (1971)
segregation model2, is the model’s ability to demonstrate that even very simple agent rules can lead to
the emergence of complex behavior. Such is the case with the two-dimensional spatial competition
model presented here, which shows how the preservation of di�ferentiation, the formation of local
duopolies, and niche market pricing can all arise from the iteration of simple local decision-making
rules. To gain further insight into these mechanics, this simple base model could be extended to in-
clude demand elasticity, asymmetric information, various interaction topologies, di�ferent distribu-
tion of customers, and higher-dimensional spaces. Additional consideration about ��rms’ decision-
making processes and estimation of the expected pro��t of changing location/price would also be in-
teresting. For instance, the ��rm agents might use reinforcement learning or neural networks, and in-
cludememory of past actions, and the ��rms could considermore than incremental changes in strategy.
We hope that this model and future agent-based models inspired by it will enable greater exploration
of multivariable economic competition and foster further investigation into out of equilibrium dy-
namics. More generally, agent-based modeling presents opportunities for exploring the state-space of
models of economic competition in ways that more traditional analytical methods have not.
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NOTES

1Economists have applied Hotelling’s model to study a wide variety of phenomenon including political competition
Roemer (2009), agglomeration in cities Fujita and Thisse (2013), product di�ferentiationMeagher and Zauner (2004),
price-increasing e�fects of competition Chen and Riordan (2008), the dynamics of resource extraction Lin andWagner
(2007), and the relation between prices and market integration Asche, Bremnes, andWessells (1999). Theoretical work
has extended Hotelling’s model to include uncertainty Meagher (2012), transportation costs Anderson (1988), di�ferent
distributions of customers Gupta, Pal, and Sarkar (1997), endogenous number of ��rms Götz (2005), and elastic demand
for product Puu (2002).
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2See for a NetLogo implementation of
Schelling’s classic segregation model.
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