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Estimating the weights of the US production network
Our US firms network data consists of 51,913 firms with 105,940 buyer-seller linkages. We
also have data on the sizes of these firms as indicated by their revenues. We do not however
have data on the sizes of buyer-seller linkages between firms. In other words, we do not have
data on the weights of the edges in the production network. Within Gualdi and Mandel’s
(2016) network economy model used in this paper, the relative sizes of firms are endogenous:
the sizes of firms emerge from the flow of money between economic agents. We therefore
estimate the weights of the production network so that the sizes of firms which emerge
from agent interactions is the same as the sizes in the empirical data. In other words, we
estimate the weights of the production network so that the empirical size distribution of
firms is an invariant distribution. To estimate weights of the production yielding an invariant
distribution of firm sizes we allow the representative household to buy goods from all firms
and sell labor to all firms. The size of the representative household is set to 83.5% of the sum
of the size of all firms, which is the ratio of “Personal Consumption Expenditures” to “Total
Intermediate” in the 2007 US Input-Output Table. Furthermore, we allow each agent in the
economy to buy goods from itself. We call the links of an agent to itself as “self weights”.
This meant that we estimated a total of 261,680 weights.

The economy consists of a representative household indexed by 0 and firms indexed by
i∈ (1, ...,n). Adjacency matrix A characterizes the network of the economy with aij indicating
the flow of money from i to j and the flow of goods in the opposite direction. The dimension
of matrix A is therefore (n+ 1)× (n+ 1). Let vector m denote the distribution of money
among agents in the economy, therefore the dimension of m is (n+ 1)×1. The problem is to
compute the non-zero weights in A such that it yields an invariant distribution of money:
ATm=m. Furthermore, we set the household’s spending on different firms consistent with
the sectoral distribution of household spending. Let s ∈ S denote a sector in the economy,
where S is the set of all sectors. If a firm i is in sector s, then we say i ∈ s. Note that
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agents are free to buy goods from themselves: aii ≥ 0. We shall call aii “self weights”. Let
the household’ss share of spending on sector s as a proportion of spending not on itself be
denoted by hs. With that said, the optimization problem can be written specified as:

minimize
x

F (A)

subject to Constraint I Am=m

subject to Constraint II
n∑
j=0

aij = 1,∀i ∈ (0, . . . ,n)

subject to Constraint III (1−a00)(
∑
j∈s

a0j) = hs,∀s ∈ S

with 0≤ aij ≤ 1,∀aij ∈ A

(1)

We shall specify an objective function F (A) with two goals in mind. The first goal is the
ensure the economic network is preserved in the process of estimation of its weights. In
other words, we would not like the non-zero entries of A to be set to zero in the process of
optimization. This goal is achieved by minimizing the sum of the square of weights aij . The
second goal is to minimize the flow of money from an agent to itself. In principle agents
are free to buy goods from themselves: aii ≥ 0 (self weights). Non zero self weights are
needed because an invariant money distribution may not exist in the absence of self weights.
However, we would like to minimize self weights so as to have the greatest possible flow of
money between agents in the network. The goal is achieved by minimizing the sum of self
weights. More specifically, the objective function is:

F (A) =
∑

i,j∈(0,...,n)
a2
ij +aii (2)

The problem is solved using Cplex Python API. Cplex is a state of the art optimization
software developed by IBM. It is freely available to academic users. Note that the problem
characterized above is a quadratic programming problem, with the unknowns in the matrix
A and the knowns in vector m. Such problems are known as matrix quadratic programming
problem. Cplex takes quadratic programming problems in the following form:

minimize
x

F (A) = xTQx+CTx (3)

where x is the vector of unknowns, the matrix Q specifies the quadratic part of the problem,
and the vector C specifies the linear part of the problem. At this point it is worth noting the
dimensions of the matrix and vectors in the problem.

A in the original problem is (n+ 1)× (n+ 1). Let the number of unknowns, i.e. the
non-zero entries of matrix A be denoted by k. Zero entries indicate the absence of buyer-seller
relation between two agents, these are known from the network data. In vector x we include
only the non-zero entries of A. Therefore the dimension of vector x is k×1, the dimension of
Q is k×k, and the dimension of C is k×1.

The two constraints of the original problem too must be converted into canonical form to
input the problem in Cplex. The first constraint Am=m specifies the unknowns in matrix A
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and the knowns in vector m. Note that m is a (n+ 1)×1 vector of the distribution of money
among agents. The Cplex format is to specify the unknows in a vector and the knowns in
matrix. Therefore Am needs to be converted to Mx, where x is the k×1 vector of unknown
weights as before, and M is a (n+ 1)×k matrix whose entries are either 0 or elements of the
vector of money distribution m.

The second constraint ∑n
j=0aij = 1,∀i ∈ (0, . . . ,n) needs to be written in matrix form.

More specifically, Ex= e characterizes the constraint, where x is a k×1 vector of unknowns
as before, E is a n×k matrix whose entries are either 0 or 1, and e is a n×1 vector whose
entries are 1.

The third constraint (1− a00)(∑
j∈sa0j) = hs,∀s ∈ S needs to written in matrix form.

More specifically, Hx= h characterizes the constraint, where x is a k×1 vector of unknowns
as before, H is a r×k matrix whose entries are either 0 or 1, and h is a r×1 vector of the
shares of household spending to different sectors of the economy, where r is the number of
sectors in the economy. We place a sector constraint based on the sectoral composition of
Personal Consumption Expenditure from the Input-Output table aggregate to nine major
sector categories as in Figure ??.

And finally, the lower and upper bounds of the weights aij ∈ A or equivalently non-zero
aij ∈ x need to be specified in Cplex. The upper bounds are set to 1 for all elements in vector
x. The lower bounds are set using a parameter λ. More specifically, the lower bound of aij∀j
is bi = 1

λdi
, where di is the number of outflows of money from agent i or equivalently the

number of sellers of inputs to agent i. Our estimates are based on λ= 108.
Figure 1 presents the cumulative distribution of the estimated weights of the production

network for three categories of weights. Consumer weights mark the weights from the
representative household to the firms for purchase of goods. Inter-firm weights mark the
weights connecting one firm to another firm. Self-weights make the weights from an agent
to itself. The mean weight overall weight is 0.198, whereas the mean self weight is 8.12×
10−6. Figure 1 shows that inter-firm weights are significantly larger than self weights, and
therefore our estimation procedure retained the much of the monetary flow from one firm
to another in the production network. Details of the code use for computing is available at
bitbucket.org/VipinVeetil/cplexweights, and the documentation of the code is available in
the documentation.pdf file in the repository.
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Figure 1: CDF of the estimated weights of the production network. Self-weight marks the
weight of each agent to itself.

References
S. Gualdi and A. Mandel. On the emergence of scale-free production networks. Journal of

Economic Dynamics and Control, 73:61–77, 2016.

4


